
PRIM U.S.S.R.,Vol.47,No.5,pp.690-692r1983 
Printed in Great Britain 

0021-8928/83 $lO.oo+o.oo 
01985 Pergsmon Press Ltd. 
UDC 531.36 

ON THE GLOBAL STABILITY OF THE LORENTZ SYSTEM* 

G.A. LEGNOV 

Conditions for global asymptotic stability are obtained for the set of 
Lorentz equations that generalize the theorem of V.I. Iudovich. 

Consider the set of equations 

u' T rl, 'I' = --B (n, 0) f. r"? (0) - o(s), 2' = Ax + Bf (II) q (1) 

where A is a constant (n x n)matrix whose eigenvalues have negative real parts, B and C are 
constant (n x m) matrices, f(a) is a continuously differentiable m-dimensional vector function, 
and e(u) and g(q. a) are continuously differentiable functions. The set of equations (1) def- 
ines the operation of a synchronous generator and the Bouass-Sadre governor /1,2/. Using the 
transformations of phase variables close to the Iudovich transormation /3/, the Lorentz set 
of equations may also be written inthe form (1). 

Henceforth, we assume that any solution of (1) is defined in the interval (0, + =), its 
stationary set A consists of isolated points, and 

&!@I, 0) 1>i4'I'. Vg SR', Vce R' 

where p1 is scme positive number. 
We introduce into the analysis the matrix K(p) = C* (A - PI)-9. where p is a complex number, 

I is a unit matrix, and c is some positive number. 

Theorem. Let the inequality 

det[&I(-l1+ Re K(ie)) #0 (2) 

hold for all oaRI. Then any solution z(t)=lu(t),'1(;),1(t)( of system (1) bounded in (O,+oo) 
satisfying condition &_+J~(o(t))p<~, approaches some state of equilibrium as t4+00. 
Proof. The inequality (2) is equivalent to the relation 

hp-'I + Re K (ica)> 0, VoeRR’ 

According to Theorem 1.2.7 and Lemma 1.2.3 in /2/ from this it follows that an nxn- 
matrix H=H*>O and a number c>O exist which satisfy the inequality 

2x*&f (Az+B&) +z*C&- pap-11 &I'< -el I (1, VI pa R*, Vge A’” (3) 

Consider the function 

The inequality (3) implies that for the solutions z(l) of (1) we have the estimate 

v' (I @)) < - h'l (n' (1 - 8-l If (a(Q) I') - 8 / 2 (9 I’ (4) 

from which it follows that for the bounded trajectory z(t,z@) of (1) that satisfies the con- 
dition - 

l)m,_+,lf (a (t, zO)) I' < P (5) 

(here ~(0, zO) = zo) the function V(z (t, z,,)) does not increase with respect to t in some interval 

(7, + 00) - From this and from the boundedness of V(.z(t, q,)) it follows that a finite limit 
liml,+,V(z (t, I~)) = L exists. 

The trajectory 2 (C, S") is bounded in (0,-t-00), hence the set Q of its limit points is non- 

empty. Let yaO. from /2/ we know that the trajectory z(f,y) E Q. Vtd R'. Hence V (2 (t, 
y)) = L, vt s R'. Moreover, from condition (5) it follows that if(u(k g))II<p, VtE R'. But 
then, using (4) we obtain the indentity I (t, y) E 0, l) (f, y) = 0 From (1) and V(I, Y)EO we 
also have 0 (t. y) = eon& . Thus QCA. This inclusion and the isolation of the points A prove 
the theorem. 

Let us now consider the Lorentz set of equations 

(6) 

where % ~3 bl are positive numbers and '1>1. Using a substitution similar to that of 
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nldowich /I+/. 

we reduce .Eqs.fEif to Eqs. (It with B= ZY-x, C= --t,9(n. a)= 1113$ f(a)= (f, e(e)== (i -&4-if@ -e . Here 
K Ip) = 2s @? - R)-?AI-I . Hence inequality (2) is satisfied, if 8< k@ @&-'. This estimate can 

be written ae follows; 
(al+ 4) v 

2% - blc= ‘&@I 7 i) p-l (7) 

Six@ Eqs.f6) are dissipative /IS!, from (7) and t&e theorex% we have the following corol- 
lary: 

Corollary. 2. Xf the solution zl(%m(%el(t) of Eqs,(G) satisfies the condition 

(9) 

Lemma 2, If at thhe point t the solution aI( ~l(~),rl(t) of (6) is contained in 
x1' (') < 0, 

Or,, then 
and if it is contained in Q*, then z,'(t)>O. 

Proof. Considering the first part of the lemma and assuming the opposite, from the 
equation I~.= ---ox (31 - yI) we obtain that w (9 >rr (t) > r/Z Eance 

which contradicts the statement that the sok~tion considered at the point t is contained in 

co," 
The second part of.the lemma is proved similarly. 
Lemmas 3. and 2 imply that for any solution zl(t),yi(t) 

holds: 
,z,(t) of (6) the following estimate 

bZ 
=*,_=I,(r)'G - . 

0 +a& Liz%I 
[I/Z- If@?* --)(l--~)]' 

X&--5) flOo1 

Comparing 18) and flo) we obtain the foXLowing statements. 

Corollary 2. If 

2az- fll) 
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then (6) is over-all asymptotically stable, i.e. any of its solutions approach some stable 
equilibrium as t--r foe. 

The estimate (11) is a generalization of a similar estimate by Iudovich /3/: 2oi-bb,<O 
which was obtained using the Liapunw function, 

Note 1. When r,+i, the right-hand side of inequality (11) approaches + 00. Hence 
for fixed bl and a1 an rl>l, will always be found that satisfies condition (11). 

Note 2. Sometimes it is interesting to consider small b, /4/. Selecting in that case 
h = b1/2 we obtain from (11) the following condition of global asymptotic stability: 
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THE LAWS OF VARIATION OF ENERGY AND MOMENTUM FOR ONE-D IklENSIONAL 
SYSTEMS WITH 110VING MOUNTINGS AND LOADS* 

A.I. VBSNITSKI, L.E. KAPLAN, and G.A. WMCIN 

The self-consistent dynamic behaviour of a one-dimensional system with a 
moving load is considered. The natural boundary conditions, previously 
obtained from the variational Hamiltonian principle /l/ for the self-con- 
sistent problem of the dynamics of one-dimensional systems, when theboundary 
motions are not specified, are used to show that the motion of the load 
results in the appearance of additional forces that are proportional to 
the load velocity. Bxpressions are obtained in terms of the density of the 
Lagrange function for the wave pressure, the wave energy flux, the wave 
momentum, the energy transport velocity, the work of the forces that vary 
the system parameters, and the distributed recoil forces that occur when 
waves propagate alonga non-uniform system. The radiation conditions are 
discussed in the class of systems considered. The critical velocities of 
the load moving along a Ttioshenko beam are determined. 

1. Consider a holonomic system with ideal constraints, consisting of a one-dimensional 
system along which a concentrated load is displaced, consistent with the motion of adistributed 
system. 
L Let x be a Cartesian coordinate along the one-dimensional system, t be the time, and U = 
((=, l):a $~<b, a<t(p} be some rectangular region in the plane z,t. We assume that the mot- 
ion of the load is defined by some function 2 = X (0. doubly differentiable in [a, 81, such 
that the curve K = ((z, t): z = x(t), a<t<@]lies in region D and divides it into parts as follows: 

D, = ((2. q: a < 2 < x (9, u< t< B). D, = ((2, t): x (t) f z < b. 
a<ta;BI 

and that the law of motion of the distributed system is defined by some vector function con- 
tinuous in D 

“(I. q = 1 
u1 (z, t) = (u,'@, t), . . ., %%l (2, 0). (0, :) = 4 
u* (2, t) = (4~ (I. 0, . . ., +I’ (5 0). (I, t) = D, 

where the vector functions ~1 (2. t) and uz (z. t) are doubly continuously differentiable in reg- 

ions D1 and I)., respectively. 
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